Search results for "host–pathogen interaction"

showing 10 items of 12 documents

Borrelia afzeliialters reproductive success in a rodent host

2018

The impact of a pathogen on the fitness and behaviour of its natural host depends upon the host–parasite relationship in a given set of environmental conditions. Here, we experimentally investigated the effects ofBorrelia afzelii,one of the aetiological agents of Lyme disease in humans, on the fitness of its natural rodent host, the bank vole (Myodes glareolus), in semi-natural conditions with two contrasting host population densities. Our results show thatB. afzeliican modify the reproductive success and spacing behaviour of its rodent host, whereas host survival was not affected. Infection impaired the breeding probability of large bank voles. Reproduction was hastened in infected females…

0106 biological sciences0301 basic medicineRodentmetsämyyräOffspringHost–pathogen interactionZoologyzoonoosithost-pathogen interactionBorrelia afzeliimedicine.disease_cause010603 evolutionary biology01 natural sciencesGeneral Biochemistry Genetics and Molecular Biology03 medical and health sciencesbiology.animalMyodes glareolusisäntäeläimetnatural hostmedicineMatingGeneral Environmental ScienceEcologyGeneral Immunology and MicrobiologybiologyReproductive successHost (biology)General Medicinezoonosislisääntyminenbiology.organism_classificationfitnessBorrelia-bakteeritBank vole030104 developmental biologyBorrelia afzeliita1181host–pathogen interactionGeneral Agricultural and Biological SciencesProceedings of the Royal Society B: Biological Sciences
researchProduct

Regulation of kynurenine biosynthesis during influenza virus infection.

2017

Influenza A viruses (IAVs) remain serious threats to public health because of the shortage of effective means of control. Developing more effective virus control modalities requires better understanding of virus–host interactions. It has previously been shown that IAV induces the production of kynurenine, which suppresses T-cell responses, enhances pain hypersensitivity and disturbs behaviour in infected animals. However, the regulation of kynurenine biosynthesis during IAV infection remains elusive. Here we showed that IAV infection induced expression of interferons (IFNs), which upregulated production of indoleamine-2,3-dioxygenase (IDO1), which catalysed the kynurenine biosynthesis. Furt…

0301 basic medicineIndoleshost-pathogen interactionViral Nonstructural Proteinsmedicine.disease_causeVirus ReplicationBiochemistryinfluenza viruschemistry.chemical_compoundMiceInfluenza A Virus H1N1 SubtypeInterferonOximesinnate immunityLungOxazolesKynurenineRegulation of gene expressionMice Inbred BALB CSulfonamidesTryptophaninterferon3. Good healthHost-Pathogen InteractionsFemaleMetabolic Networks and Pathwaysmedicine.drugHost–pathogen interaction030106 microbiologyPrimary Cell CultureBiologyta3111Antiviral AgentsVirus03 medical and health sciences3-dioxygenase (IDO1)Orthomyxoviridae InfectionsmedicineAnimalsHumansImmunologic FactorsIndoleamine-Pyrrole 23-DioxygenasePyrrolesMolecular BiologyInnate immune systemta1184Macrophagesta1183ta1182Cell BiologyVirologyindoleamine-pyrrole 2Thiazoles030104 developmental biologyHerpes simplex virusViral replicationchemistryGene Expression RegulationInterferonsTranscriptomeKynurenineThe FEBS journal
researchProduct

Host-based lipid inflammation drives pathogenesis in Francisella infection

2017

Mass spectrometry imaging (MSI) was used to elucidate host lipids involved in the inflammatory signaling pathway generated at the host-pathogen interface during a septic bacterial infection. Using Francisella novicida as a model organism, a bacterial lipid virulence factor (endotoxin) was imaged and identified along with host phospholipids involved in the splenic response in murine tissues. Here, we demonstrate detection and distribution of endotoxin in a lethal murine F. novicida infection model, in addition to determining the temporally and spatially resolved innate lipid inflammatory response in both 2D and 3D renderings using MSI. Further, we show that the cyclooxygenase-2-dependent lip…

0301 basic medicineLipopolysaccharideDIVERSITYGene ExpressionLIPOPOLYSACCHARIDEhost-pathogen interactionmedicine.disease_cause01 natural sciencesMass SpectrometryVirulence factorMicechemistry.chemical_compoundlipid inflammationcyclooxygenase pathwayHETEROGENEITYFrancisellaPhospholipidsMice KnockoutMultidisciplinarybiologyTULAREMIABiological SciencesMolecular ImagingHost-Pathogen InteractionsFrancisellalipids (amino acids peptides and proteins)FemaleSignal TransductionLPSHost–pathogen interactionmicrobial pathogenesismass spectrometry imagingDinoprostoneMicrobiologyCyclooxygenase pathwayProinflammatory cytokine03 medical and health sciencesImmune systemIMAGING MASS-SPECTROMETRYmedicineAnimalsBIOSYNTHESISFrancisella novicidaInflammationMacrophages010401 analytical chemistrybacterial infections and mycosesbiology.organism_classificationSurvival AnalysisImmunity Innate0104 chemical sciencesEndotoxinsMice Inbred C57BL030104 developmental biologychemistryCyclooxygenase 2EicosanoidsGram-Negative Bacterial InfectionsSpleenProceedings of the National Academy of Sciences
researchProduct

Trans-generational immune priming in the mealworm beetle protects eggs through pathogen-dependent mechanisms imposing no immediate fitness cost for t…

2018

8 pages; International audience; Immune-challenged mothers can improve their offspring immunity through trans-generational immune priming (TGIP). In insects, TGIP endows the offspring with lifetime immunity, including the eggs, which are likely exposed soon after maternal infection. Egg protection may rely on the transfer of maternal immune effectors to the egg or/and the induction of egg immune genes. These respective mechanisms are assumed to have early-life fitness costs of different magnitude for the offspring. We provide evidence in the mealworm beetle Tenebrio molitor that enhanced egg immunity following a maternal immune challenge is achieved by both of these mechanisms but in a path…

0301 basic medicineMealwormOffspringMaternal effectsmedia_common.quotation_subjectHost–pathogen interactionanimal diseasesImmunologyBacillus thuringiensisZoologychemical and pharmacologic phenomenaInsectBiologyEcological immunology03 medical and health sciencesImmune systemImmunity[ SDV.EE.IEO ] Life Sciences [q-bio]/Ecology environment/SymbiosisAnimals[ SDV.IMM ] Life Sciences [q-bio]/ImmunologyArthrobacterTenebrioCells CulturedOvummedia_commonHost-pathogen interactionEcologyHatching[SDV.BID.EVO]Life Sciences [q-bio]/Biodiversity/Populations and Evolution [q-bio.PE]Maternal effectBacterial Infectionsbiochemical phenomena metabolism and nutritionbiology.organism_classificationBiological EvolutionInvertebrates[SDV.BA.ZI]Life Sciences [q-bio]/Animal biology/Invertebrate ZoologyFitness costs030104 developmental biologyLarvaHost-Pathogen Interactions[SDV.IMM]Life Sciences [q-bio]/ImmunologybacteriaImmunizationGenetic FitnessImmunity Maternally-AcquiredDevelopmental Biology[SDV.EE.IEO]Life Sciences [q-bio]/Ecology environment/Symbiosis
researchProduct

A New Phylogenetic Framework for the Animal-adaptedMycobacterium tuberculosisComplex

2018

Tuberculosis (TB) affects humans and other animals and is caused by bacteria from the Mycobacterium tuberculosis complex (MTBC). Previous studies have shown that there are at least nine members of the MTBC infecting animals other than humans; these have also been referred to as ecotypes. However, the ecology and the evolution of these animal-adapted MTBC ecotypes are poorly understood. Here we screened 12,886 publicly available MTBC genomes and newly sequenced 17 animal-adapted MTBC strains, gathering a total of 529 genomes of animal-adapted MTBC strains. Phylogenomic and comparative analyses confirm that the animal-adapted MTBC members are paraphyletic with some members more closely relate…

0301 basic medicineMicrobiology (medical)Host–pathogen interactionsLineage (evolution)Populationlcsh:QR1-502specificityhost rangeHost tropismMicrobiologyGenetic diversitylcsh:Microbiology03 medical and health sciencesPhylogenomicseducationClade030304 developmental biologyWhole-genome sequencing0303 health scienceseducation.field_of_studybiologyPhylogenetic tree030306 microbiologygenetic diversitybiology.organism_classification3. Good health030104 developmental biologyhost–pathogen interactions; specificity; host range; genetic diversity; whole-genome sequencingMycobacterium tuberculosis complexwhole-genome sequencingEvolutionary biologyHost rangeSpecificityMycobacterium africanumhost–pathogen interactions
researchProduct

Over-expression of CsGSTU promotes tolerance to the herbicide alachlor and resistance to Pseudomonas syringae pv. tabaci in transgenic tobacco

2017

Glutathione transferases (GSTs) mainly catalyze the nucleophilic addition of glutathione to a large variety of hydrophobic molecules participating to the vacuole compartmentalization of many toxic compounds. In this work, the putative tolerance of transgenic tobacco plants over-expressing CsGSTU genes towards the chloroacetanilide herbicide alachlor was investigated. Our results show that the treatment with 0.0075 mg cm-3 of alachlor strongly affects the growth of both wild type and transformed tobacco seedlings with the sole exception of the transgenic lines overexpressing CsGSTU2 isoform that are barely influenced by herbicide treatment. In order to correlate the in planta studies with en…

0301 basic medicineTransgeneHost–pathogen interactionAlachlorWild typefood and beveragesPlant ScienceGlutathioneHorticultureBiotic stressBiology03 medical and health scienceschemistry.chemical_compound030104 developmental biologybiotic stress glutathione transferase host-pathogen interaction phytoremediationBiochemistrychemistryBotanyPseudomonas syringaePlant defense against herbivoryBiologia plantarum
researchProduct

Upregulated MicroRNAs 342 and 15a Mediate Host-Pathogen Interaction in Pneumococcal Community-Acquired Pneumonia

2020

Community-acquired pneumoniaDownregulation and upregulationHost–pathogen interactionmicroRNAmedicineBiologymedicine.diseaseMicrobiologyB28. HOST AND MICROBIAL CLINICAL STUDIES IN LUNG INFECTIONS AND LUNG DISEASES
researchProduct

The effects of Borrelia infection on its wintering rodent host

2022

AbstractIn seasonal environments, appropriate adaptations are crucial for organisms to maximize their fitness. For instance, in many species, the immune function has been noticed to decrease during winter, which is assumed to be an adaptation to the season’s limited food availability. Consequences of an infection on the health and survival of the host organism could thus be more severe in winter than in summer. Here, we experimentally investigated the effect of a zoonotic, endemic pathogen, Borrelia afzelii infection on the survival and body condition in its host, the bank vole (Myodes glareolus), during late autumn–early winter under semi-natural field conditions in 11 large outdoor enclos…

Lyme DiseaseIxodesArvicolinaemetsämyyräRodentiazoonosisisäntälajitwinterBorrelia-bakteerittaudinaiheuttajatBorrelia burgdorferi GroupBorrelia afzeliiMyodes glareolustalviisäntäeläimetAnimalssyksySeasonsautumnBorrelia InfectionsEcology Evolution Behavior and Systematicshost–pathogen interactions
researchProduct

The Conservation of Low Complexity Regions in Bacterial Proteins Depends on the Pathogenicity of the Strain and Subcellular Location of the Protein

2021

Low complexity regions (LCRs) in proteins are characterized by amino acid frequencies that differ from the average. These regions evolve faster and tend to be less conserved between homologs than globular domains. They are not common in bacteria, as compared to their prevalence in eukaryotes. Studying their conservation could help provide hypotheses about their function. To obtain the appropriate evolutionary focus for this rapidly evolving feature, here we study the conservation of LCRs in bacterial strains and compare their high variability to the closeness of the strains. For this, we selected 20 taxonomically diverse bacterial species and obtained the completely sequenced proteomes of t…

Proteomics0301 basic medicinelcsh:QH426-470030106 microbiologyBiologyArticlecompositionally biased regionsEvolution MolecularLow complexity03 medical and health sciencesBacterial ProteinsSequence Analysis ProteinGeneticsExtracellularGenetics (clinical)chemistry.chemical_classificationBacteriaVirulenceStrain (chemistry)Computational Biologybiology.organism_classificationlow complexity regionsAmino acidhomorepeatslcsh:Genetics030104 developmental biologychemistryEvolutionary biologybacterial strainsProteomeorthologyBacterial outer membraneBacteriaFunction (biology)host–pathogen interactionsGenes
researchProduct

Proteomic composition of Nipah virus-like particles

2017

Abstract Virions are often described as virus-only entities with no cellular components with the exception of the lipids in their membranes. However, advances in proteomics are revealing substantial amounts of host proteins in the viral particles. In the case of Nipah virus (NiV), the viral components in the virion have been known for some time. Nonetheless, no information has been obtained regarding the cellular proteins in the viral particles. To address this question, we produced Virus-Like Particles (VLPs) for NiV by expressing the F, G and M proteins in human-derived cells. Next, the proteomic content in these VLPs was analyzed by LC-MS/MS. We identified 67 human proteins including sol…

Proteomics0301 basic medicinevirusesNipah virusHost–pathogen interactionBiophysicsBiologyProteomicsBiochemistryVirusViral Proteins03 medical and health sciencesViral life cycleViral envelopeTandem Mass SpectrometryViral entryHumans030102 biochemistry & molecular biologyNipah VirusVirionVirology030104 developmental biologyCellular componentHost-Pathogen InteractionsChromatography LiquidProtein BindingJournal of Proteomics
researchProduct